Effect of inoculation and nitrogen on isoflavonoid concentration in wild-type and nodulation-mutant soybean roots.

نویسندگان

  • M J Cho
  • J E Harper
چکیده

The isoflavones, daidzein and genistein, have been isolated and identified as the major inducers of nod genes of Bradyrhizobium japonicum. The common nod genes of rhizobia are in turn responsible for stimulating root hair curling and cortical root cell division, the earliest steps in the host response. This study evaluated whether there was a relationship between root isoflavonoid production and the hypernodulation phenotype of selected soybean (Glycine max [L.] Merr.) mutants. Three independently selected hypernodulating soybean mutants (NOD1-3, NOD2-4, and NOD3-7) and a nonnodulating mutant (NN5) were compared with the Williams parent for isoflavonoid concentrations. High performance liquid chromatographic analyses of soybean root extracts showed that all lines increased in daidzein, genistein, and coumestrol concentrations throughout the 12-day growth period after transplanting of both inoculated and noninoculated plants; transplanting and inoculation were done 6 days after planting. No significant differences were detected in the concentration of these compounds among the three noninoculated hypernodulating mutants and the Williams parent. In response to inoculation, the three hypernodulating mutants had higher isoflavonoid concentrations than did the Williams control at 9 to 12 days after inoculation when grown at 0 millimolar N level. However, the inoculated nonnodulating mutant also had higher isoflavonoid concentrations than did Williams. N application [urea, (NH(4))(2)SO(4) and NO(3) (-)] decreased the concentration of all three isoflavonoid compounds in all soybean lines. Application of NO(3) (-) was most inhibitory to isoflavonoid concentrations, and inhibition by NO(3) (-) was concentration dependent. These results are consistent with a conclusion that differential NO(3) (-) inhibition of nodulation may be partially due to changes in isoflavonoid levels, although the similar response of the nonnodulating mutant brings this conclusion into question. Alternatively, the nodulation control in the NN5 mutant may be due to factors totally unrelated to isoflavonoids, leaving open the possibility that isoflavonoids play a role in differential nodulation of lines genetically competent to nodulate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Root Isoflavonoid Response to Grafting between Wild-Type and Nodulation-Mutant Soybean Plants.

It was previously reported that the hypernodulating soybean (Glycine max [L.] Merr.) mutants, derived from the cultivar Williams, had higher root concentration of isoflavonoid compounds (daidzein, genistein, and coumestrol) than did Williams at 9 to 12 days after inoculation with Bradyrhizobium japonicum. These compounds are known inducers of nod genes in B. japonicum and may be involved in sub...

متن کامل

Lack of Systemic Suppression of Nodulation in Split Root Systems of Supernodulating Soybean (Glycine max [L.] Merr.) Mutants.

Wild-type soybean (Glycine max [L] Merr. cv Bragg) and a nitrate-tolerant supernodulating mutant (nts382) were grown in split root systems to investigate the involvement of the autoregulation response and the effect of timing of inoculation on nodule suppression. In Bragg, nodulation of the root portion receiving the delayed inoculation was suppressed nearly 100% by a 7-day prior inoculation of...

متن کامل

Infection by Heterodera glycines Elevates Isoflavonoid Production and Influences Soybean Nodulation.

High-performance liquid chromatography and Sinorhizobium fredii USDA191 nodC-lacZ gene fusion were used to monitor changes in the isoflavonoid content of soybean roots infected with Heterodera glycines isolate TN1. Isoflavonoid concentrations in infected roots of both H. glycines-resistant Hartwig and susceptible Essex soybean were two to four-fold higher than those of uninfected roots 2 and 3 ...

متن کامل

A Supernodulation and Nitrate-Tolerant Symbiotic (nts) Soybean Mutant.

The nodulation characteristics of soybean (Glycine max) mutant nts382 are described. The mutant nodulated significantly more than the parent cultivar Bragg in the presence and absence of several combined nitrogen sources (KNO(3), urea, NH(4)Cl, and NH(4)NO(3)). The number of nodules on the tap root and on lateral roots was increased in the mutant line. In the presence of KNO(3) and urea, nitrog...

متن کامل

Rhizobial Nodulation Factors Stimulate Mycorrhizal Colonization of Nodulating and Nonnodulating Soybeans.

Legumes form tripartite symbiotic associations with noduleinducing rhizobia and vesicular-arbuscular mycorrhizal fungi. Co-inoculation of soybean (Glycine max [L.] Merr.) roots with Bradyrhizobium japonicum 61-A-101 considerably enhanced colonization by the mycorrhizal fungus Glomus mosseae. A similar stimulatory effect on mycorrhizal colonization was also observed in nonnodulating soybean muta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 95 2  شماره 

صفحات  -

تاریخ انتشار 1991